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Abstract
A major hurdle in achieving high performance in message-passing architectures is the inevitable

communication overhead that occurs when tasks scheduled on different processors need to exchange
data. This overhead can cause a stern penalty especially in distributed systems such as clusters of
workstations, where the network channels are considerably slower than the processors. For a given
parallel program represented by a task graph, the communication overhead can be mitigated by
redundantly executing some tasks on which other tasks critically depend. There have been a few task-
duplication based scheduling algorithms that are designed for such environments. Although these
algorithms are independently shown to be effective, no attempt has been made to quantitatively compare
their performance under a broad range of input parameters. In this paper we analyze the problem of
using task-duplication in compile-time scheduling of task graphs on parallel and distributed systems.
We discuss the characteristics of six recently proposed algorithms, and examine their merits,
differences, and expediency for different environments. Through a comprehensive experimental
evaluation, the six algorithms are compared in terms of schedule lengths, number of processors used,
and the amount of scheduling time required.

Keywords: Algorithms, Distributed Systems, Multicomputers, Multiprocessors, Duplication-Based
Scheduling, Parallel Scheduling, Task Graphs.

1  Introduction
Recently we have witnessed great advancements in multicomputer architectures but interprocessor

communication overhead is nevertheless a major hurdle to efficient execution of parallel programs. This
overhead occurs when two tasks of a parallel program are assigned to different processors but need to
exchange some data. However, such adverse effects can be alleviated by using task-duplication based
scheduling techniques. Task-duplication means scheduling a parallel program by redundantly allocating
some of its tasks on which other tasks of the program critically depend. This can potentially reduce the
start times of tasks waiting to receive the data from the critical tasks, and eventually improves the
overall execution time of the entire program.

In this paper we address the static scheduling problem with task-duplication. In static scheduling, a
parallel program can be represented by a directed acyclic graph (DAG) withv nodes
andedirected edges each of which is denoted by . A node in a DAG represents a task which is a
set of instructions that must be executed sequentially in the same processor without preemption.
Associated with each node is a number indicating the computation time required. This number is called
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thecomputation costof a node and is denoted by . The directed edges in the DAG correspond
to the communication messages and precedence constraints among the tasks. Associated with each edge
is a number indicating the time required to communicate the data. This number is called the
communication costof the edge and is denoted by . Thecommunication-to-computation-ratio
(CCR) of a DAG is defined as its average communication cost divided by its average computation cost.
The target multicomputer architecture is modeled as a fully-connected network ofprocessing elements
(PEs). Each PE consists of a processor and a local memory so that the PEs share data solely by message-
passing. As such, the communication cost among two nodes assigned to the same PE is assumed to be
zero. If a node is scheduled to some PE, and denote its start time and finish time,
respectively. After all nodes have been scheduled, theschedule lengthis defined as
across all processors. The objective of a scheduling algorithm is to minimize by
properly allocating the nodes to the PEs and sequencing their execution orders without violating the
precedence constraints.

Scheduling a DAG to multiprocessors is an NP-complete problem in most cases [5], [7], [16] so that
many heuristics have been suggested [1], [12], [14], [18], [19]. The complexity and solution quality of a
heuristic largely depend on the structure of the DAG and the target machine model [1], [5], [8], [9], [10],
[11], [17].

Even with an efficient scheduling algorithm, it may happen that some PEs are idle during different
time slots because some nodes wait for the data from the nodes assigned to other PEs. If these idle time
slots can be utilized effectively by identifying and redundantly allocating the critical nodes, the schedule
length can be further reduced. For example, consider a simple task graph shown in Figure 1(a). An
optimal schedule without duplication is shown in Figure 1(b) (PE denotes a processing element). As can
be seen, PE 1 is idle from time 0 to time 4 since node is waiting for the output data from . If is
duplicated to this idle time period of PE 1, the schedule length can be reduced to the minimum, as
shown in Figure 1(c). Thus, duplication has the potential to reduce the schedule length by efficiently
utilizing the processors. Using duplication, however, also makes the scheduling problem more complex
since the scheduling algorithm, in addition to observing the precedence constraints, needs to select
important nodes for duplication and identify idle time slots to accommodate those nodes.

In this paper we present an extensive comparison of six recently reported task-duplication based
algorithms including: the DSH (Duplication Scheduling Heuristic) algorithm [13], the BTDH (Bottom-
up Top-down Duplication Heuristic) [4], the LWB (Lower-Bound) algorithm [6], the PY algorithm
(named after its designer Papadimitriou and Yannakakis) [16], the LCTD (Linear-Clustering with Task-
Duplication) algorithm [18], and the CPFD (Critical-Path Fast Duplication) algorithm [2]. We use four
suites of DAGs with a broad range of CCRs and graph sizes. The algorithms are evaluated in terms of
schedule lengths, number of processors used, and scheduling time required. The characteristics of the
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Figure 1: (a) A simple task graph; (b) a schedule without duplication; (c) a schedule with duplication.



six algorithms compared in this paper are briefly shown in Table 1.

This paper is organized as follows. In Section 2, we present an example to illustrate the functionality
of all algorithms. In Section 3, we present the performance results of all the algorithms. Some
concluding remarks are provided in the last section.
Table 1: Some duplication-based scheduling algorithms and their characteristics.

2  Task-Duplication-Based Scheduling
In order to have a qualitative understanding of the functionality of the six algorithms, in this section

we present a scheduling example by using a small DAG (see Figure 7(a)). Some node attributes used by
the algorithms for computing priorities are also shown in Figure 7(b). Note that the nodes marked by an
asterisk are calledcritical path nodes (CPNs). A critical path (CP) is a path in the DAG with the largest
sum of computation and communication costs. The CPNs are commonly reckoned as more important
nodes because timely scheduling of the CPNs can potentially lead to a shorter schedule. The SL of a
node is the largest sum of computation costs on a path from the node to an exit node. Further, the list
used by the CPFD algorithm, called the CPN-Dominant Sequence (denoted by CPN-DS), is also shown
in Figure 7(b). For details of the construction of CPN-DS, the reader is referred to [2].

A schedule without task duplication is shown in Figure 7(c). Communication edges are not shown
in the schedule for clarity. As can be seen, the noden3 needs to wait for the data from noden1, resulting
in an idle time period of 3 units in processor PE 1. Similarly, the noden7 needs to wait for the data from
n3. Thus, if n3 can start earlier on PE 1 by duplicatingn1, thenn7 can also start earlier and the overall
schedule length can be reduced.

The schedule generated by the LWB algorithm is shown in Figure 3 which also includes a
scheduling trace. The schedule length is reduced by 1 time-unit compared to the schedule without
duplication. However, the number of processors used increases from 2 to 5. Obviously, the duplication
employed by the LWB algorithm for this task graph is not effective. The problem is that the LWB
algorithm attempts to duplicate only ancestor nodes on the same path despite that the start time of a
candidate node can be further reduced by duplicating the ancestor nodes on the other paths. For
instance, the start time of the noden7 can be dramatically reduced if the nodes n2 and n3 are also
duplicated to PE 4. The main drawback of the LWB algorithm is that it only considers the ancestors on
the same path for scheduling a node. When a node has more than one heavily communicated parents,
this technique does not minimize the start time of the node (which can be done by duplicating more than
one parents on a processor).

The schedule generated by the LCTD algorithm and the scheduling trace are shown in Figure 4. The
schedule length is much shorter than that of the LWB algorithm and the utilization of processors is also
much better. This is because the LCTD algorithm considers every ancestor nodes reaching a node for

Algorithm Researchers Ancestors Duplicated Optimality Complexity

DSH Kruatrachue et al. [13] All possible ancestors Unknown

PY Papadimitriou et al. [16] All possible ancestors Within a factor of 2 from optimal

LWB Colin et al. [6] Only ancestors on the
same path

Optimal for DAGs with computation costs
strictly greater than communication costs

BTDH Chung et al. [4] All possible ancestors Unknown

LCTD Chen et al [18] All possible ancestors Unknown

CPFD Ahmad et al. [2] All possible ancestors Optimal for in-trees and DAGs with
computation costs greater than comm. costs
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Figure 2: (a) A simple task graph; (b) static levels of the nodes; (c)
a schedule without using task duplication (schedule length = 26).
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Figure 3: (a) The schedule generated by the LWB algorithm (schedule
length = 25); (b) The lower bound values computed by the LWB algorithm.

node lwb Parent of critical edge

n1 0 NIL
n2 2 n1
n3 2 n1
n4 2 n1
n5 2 n1
n6 5 n2
n7 10 n1
n8 10 n4
n9 24 NIL
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Figure 4: (a) The schedule generated by the LCTD algorithm
(schedule length = 22); (b) A scheduling trace of the LCTD algorithm.

n1
2
n2

3

n5

5

n9
1

n3

3

n7

4

n4

4

n8

4

n6

4

5

PE 0

10

PE 1

20

15

22

0
PE 2 PE 3 PE 4

n1
2

n1
2

n5

5

n1
2

n1
2

n2

3

n3

3

n8

4

n2

3
Step Node Old ST New ST Nodes Dup.

1 n1 0 0 NIL
2 n7 14 8 n2, n3
3 n9 28 21 n5, n8
4 n5 3 2 n1
5 n8 14 10 n2
6 n2 6 2 n1
7 n6 9 5 NIL
8 n4 3 2 n1
9 n3 3 2 n1

(a)
(b)



duplication.

The DSH and BTDH algorithms generate the same schedule shown in Figure 5. This is presumably
because the BTDH algorithm is essentially an extension of the DSH algorithm. Although the schedule
length is the same as that of the LCTD algorithm, the scheduling of most of the nodes is different. This
is because the LCTD algorithm assigns all the nodes on a critical path to the same processor at once,
while the DSH algorithm examines the nodes for scheduling in a descending order of static levels.
Linear clustering can easily make mistake in identifying nodes that should be scheduled to the same
processor. In addition, in the context of duplication based scheduling, linear clustering prematurely
constrains the number of processors used. This mistake can be detrimental because the start times of
some critical nodes may well be reduced by using a new processor in which its ancestors are duplicated.
Thus, this lack of space for duplicating ancestors of a node causes duplication ineffective.

The schedule generated by the PY algorithm is shown in Figure 6. The schedule length is much
longer than that of the previous three algorithms, despite that the PY algorithm guarantees the schedule
length to be within a factor of 2 from the optimal. It should be noted that the schedule length is even
longer than the schedule without duplication shown earlier. The principles used by the PY algorithm are
again entirely different in that it relies on the lower bound values (thee values) to select the nodes from
the sub-graph for duplication. Thee value of a node is computed by iteratively constructing the largest
sub-graph reaching the node. The nodes included in the sub-graph are candidates for duplication. The
major problem is that it clusters nodes in a sub-graph for duplication by merely using a node inclusion
inequality, which checks the message arrival times against the lower bound values of the candidate node
under consideration. This can potentially leave out the nodes that are more important to reducing the
start time of the given node and lead to a poor schedule.

The schedule generated by the CPFD algorithm is shown in Figure 7(a). The schedule length is 20
which is optimal. The scheduling steps are also shown in Figure 7(b). Notice that the node(s) duplicated
at each step is also shown in the last column of the table. At the first step, the first CPN,n1, is selected
for scheduling. At the second step, the second CPN (n7) is selected for scheduling but its parent nodesn2

andn3 are unscheduled. Thus, their start times are recursively minimized. Next, the recursive procedure
returns to schedulen7. Then, the last CPN (n9) is examined. As most of the ancestor nodes ofn9 are not
scheduled, the duplication procedure is also recursively applied to them so that they are scheduled to
start at the earliest possible times. Finally, whenn9 is scheduled, only the necessary nodes are
duplicated. Unlike the other algorithms, the CPFD algorithm does not duplicate the noden3 when trying
to minimize the start time ofn7.

3  Performance and Comparisons
The six algorithms were implemented on a SUN SPARC Station 2 using the C language. We used

two suites of task graphs: regular and irregular task graphs. The regular graphs represent two parallel
applications: the mean value analysis [3] and the LU-decomposition [14]. The irregular graphs include
the in-tree, out-tree, fork-join and completely random task graphs [3].

In each graph, the computation costs of the individual nodes were randomly selected from a uniform
distribution with mean equal to the chosen average computation cost. Similarly, the communication
costs of the edges were randomly selected from a uniform distribution with mean equal to the average
communication cost. Within each type of graph, we used seven values of CCR which were 0.1, 0.5, 1,
1.5, 2, 5 and 10. For each of these values, we generated 10 different graphs of various sizes. For
irregular graphs, the number of nodes varied from 50 to 500 with an increment of 50. The regular graphs
on the other hand can be characterized by the size of their data matrix (the number of nodes is roughly



Figure 5: (a) The schedule generated by the DSH and BTDH algorithms
(schedule length = 22); (b) A scheduling trace of the DSH and BTDH algorithms.
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Figure 6: (a) The schedule generated by the PY algorithm (schedule
length = 27); (b) Theb values computed by the PY algorithms.
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Figure 7: (a) The schedule generated by the CPFD algorithm (schedule length = 20); (b) the
scheduling steps of the CPFD algorithm (a node is scheduled to the processor on which the start
time is marked by an asterisk; an entry with “N.C.” indicates the processor is not considered).
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equal toN2). The size of the matrix was varied from 15 to 24. Thus, for each type of graph structure, 70
graphs were generated, with the total number of graphs corresponding to 420 (6 graph types, 7 CCRs,
10 graph sizes).

The performance comparison of the CPFD, LWB, LCTD, DSH, BTDH and PY algorithm was made
in a number of ways. First, the schedules lengths produced by these algorithms were compared with
each other by varying graph sizes, graph types and various values of CCR. Next, we compared the
number of times each algorithm produced the best solution. We also observed the percentage
degradation in performance of an algorithm compared to the best solution. Finally, the running times by
each algorithm were also noted.

For the first comparison, we present the schedule lengths produced by the six algorithms. The
normalized schedule length (NSL), defined as the ratio of schedule length to the critical-path length, is
computed for each solution generated by the algorithms.

In Table 2(a), the average NSLs produced by each algorithm for each graph type (averaged over 7
values of CCR and 10 different graph sizes) are shown. These numbers clearly indicate that the CPFD
algorithm produced the shortest average schedule length not only across all graphs types but also for

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

LU MVA InTree OutTree ForkJoin Random

1.32 2.22 2.49 1.00 2.20 2.12
1.34 2.01 2.10 1.48 1.97 1.86
1.21 1.60 1.83 1.22 1.65 1.65
1.21 1.55 1.79 1.00 1.58 1.56
1.49 1.93 2.11 1.24 2.29 2.06
1.15 1.52 1.76 1.00 1.54 1.50

Table 2(a): Average NSLs across all graph types.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

0.1 0.5 1.0 1.5 2.0 5.0 10.0

1.01 1.08 1.24 1.40 1.57 2.64 4.52
1.01 1.13 1.33 1.56 1.76 2.50 3.33
1.02 1.10 1.23 1.33 1.43 1.89 2.47
1.03 1.10 1.21 1.30 1.40 1.77 2.26
1.03 1.18 1.37 1.55 1.73 2.58 3.39
1.01 1.07 1.17 1.26 1.34 1.75 2.21

Table 2(b): Average NSLs across all CCRs.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

15 16 17 18 19 20 21 22 23 24

1.55 1.62 1.68 1.73 1.78 1.81 1.85 1.89 1.92 1.95
1.35 1.45 1.52 1.58 1.65 1.70 1.75 1.79 1.83 1.87
1.23 1.27 1.31 1.33 1.35 1.37 1.40 1.41 1.43 1.44
1.23 1.26 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.43
1.43 1.56 1.57 1.60 1.63 1.68 1.69 1.73 1.74 1.75
1.21 1.24 1.26 1.28 1.30 1.31 1.32 1.33 1.35 1.36

Table 2(c):Average NSLs for regular task graphs of various matrix dimensions.

Graph Types

CCRs

Matrix Dimensions

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

50 100 150 200 250 300 350 400 450 500

1.62 1.76 1.76 1.85 1.93 1.98 2.06 2.07 2.05 2.16
1.39 1.60 1.61 1.75 1.82 1.82 1.95 2.01 2.01 2.08
1.27 1.42 1.38 1.46 1.49 1.52 1.55 1.61 1.60 1.67
1.24 1.37 1.32 1.40 1.45 1.44 1.49 1.53 1.53 1.61
1.54 1.69 1.70 1.77 1.82 1.89 1.96 1.97 1.96 2.03
1.23 1.35 1.30 1.37 1.41 1.41 1.44 1.47 1.47 1.55

Table 2(d): Average NSLs for irregular task graphs of various sizes.

Number of Nodes



each type of graph. The next best algorithm was the BTDH algorithm. There was a little difference
between the performance of DSH and BTDH. The LWB algorithm had a large variations in its
performance. It performed good for LU-decomposition DAGs and out-trees but did not perform well on
other graphs. Based on this comparison, the ranking of the six algorithms is as follows: CPFD, BTDH,
DSH, LCTD, PY, and LWB.

Table 2(b) shows the NSLs (averaged over graph size and graph type) of each algorithm against
various values of CCR. We can observe that all algorithms were very sensitive to the value of CCR. This
is because a larger value of CCR implies a larger variation in the start times of the nodes, which in turn
causes the algorithms to make more wrong scheduling decisions. A large value of CCR can thus test the
robustness of an algorithm. We can also notice that the differences between the performance of various
algorithms became more significant with larger values of CCR. The ranking of the algorithms based on
performance, however, is consistent with our earlier conclusion.

Table 2(c) and Table 2(d) show the NSLs yielded by each algorithm against various graph types
(averaged across graph types and CCRs), for regular and irregular graphs, respectively. We can notice
that in this context the CPFD was also consistently better than all other algorithms. The size of the
graph, both for regular and irregular graphs, had no bearing on this conclusion.

Table 3(a) shows the number of times an algorithm produced the best solution compared to all other
algorithms (each entry is the number of best solutions out of 70 trials with various values of CCR and
graph sizes) for various types of graphs. The right most column shows the total number of best solutions
out of 420trials. The CPFD algorithm produced the best solutions 413 times out of 420 cases. The LWB
algorithm produced the next highest number (211 cases) of best solutions. The BTDH algorithm showed
comparable performance as that of the LWB algorithm. The other algorithms, however, generated
dramatically smaller number of best solutions.

Table 3(b) shows the effects of CCR on an algorithm’s ability to produce the best solution. The
LBW and LCTD algorithms can be seen to perform well only with low values of CCR. The rest of the
algorithms appeared to be insensitive to the value of CCR. The impact of the graphs size, as shown in
Table 3(c) and Table 3(d), did not have any effect on an algorithms’s ability to produce the best solution.

The next four sets of tables (Table 4 to Table 7) indicate howbadlyan algorithm performed when it
could not produce the best solution. That is, for each test case, we compared the schedule length
produced by an algorithm with the best solution yielded by another algorithm, and measured the amount
of degradation. Table 4(a) and Table 4(b) show the number of cases when the percentage degradation
was less than or equal to 5%. Table 5(a) and Table 5(b) show the number of cases when this degradation
was between 5 to 10%. Table 6(a) and Table 6(b) show the number of cases when the degradation was
between 10 to 20%. Finally Table 7(a) and Table 7(b) show the number of cases when the degradation
was more than 20%. These tables do not include the results showing the impact of graphs size on these
numbers since such an impact was found to be insignificant. These tables indicate that, out of 7 cases in
which the CPFD algorithm did not produce the best solution, its performance degradation was less than
5% in 5 cases and was more than 20% in one case only. In contrast, the performance degradation of the
other algorithms was found to be in all ranges. The performance degradation of the LCTD and PY
algorithms in the range of 20% or more was more frequent compared to the rest of the algorithms. The
performance of the BTDH and DSH algorithm was better than the LWB, LCTD and PY algorithms. The
LWB algorithm, as noticed earlier, had large fluctuations in performance.

An algorithm’s time complexity is an important performance measure. We include here the
measured running times of all algorithms running on a SUN SPARC workstation. These times are



Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

LU MVA InTree OutTree ForkJoin Random

50 23 26 70 21 21
20 0 29 20 2 11
33 10 39 23 7 18
33 15 42 70 19 25
0 0 8 14 1 2
70 70 68 70 70 65

Table 3(a): Number of best solutions across all graph types.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

0.1 0.5 1.0 1.5 2.0 5.0 10.0

70 59 32 2 24 22 2
37 23 8 4 7 2 1
37 25 9 17 11 11 20
36 29 21 38 21 21 38
2 2 3 9 4 3 3
60 60 60 57 60 59 57

Table 3(b): Number of best solutions across all CCRs.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

15 16 17 18 19 20 21 22 23 24

8 8 8 7 7 7 7 7 7 7
3 1 2 2 2 2 2 2 2 2
15 13 4 2 2 2 3 1 0 1
17 11 5 3 3 3 4 1 0 1
0 0 0 0 0 0 0 0 0 0
14 14 14 14 14 14 14 14 14 14

Table 3(c): Number of best solutions for regular task graphs of various matrix dimensions.

Graph Types

CCRs

Matrix Dimensions

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

50 100 150 200 250 300 350 400 450 500

16 14 16 14 13 13 12 14 13 13
15 10 8 4 5 3 5 4 5 3
22 11 13 8 6 7 6 5 6 3
28 21 20 17 13 13 11 12 11 10
6 9 3 2 1 0 2 0 2 0
28 27 27 26 28 27 27 28 27 28

Table 3(d): Number of best solutions for irregular task graphs of various sizes.

Number of Nodes

ALL

211
82
130
204
26
413

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

LU MVA InTree OutTree ForkJoin Random

0 7 8 0 11 7
10 10 8 5 15 11
14 33 16 6 32 17
14 46 19 0 42 21
10 15 19 11 13 11
0 0 2 0 0 3

Table 4(a): Number of times the % degradation of NSL (with respect to
the best solutions) is within the interval [0, 5] across all graph types.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

0.1 0.5 1.0 1.5 2.0 5.0 10.0

2 4 17 9 1 0 0
32 11 12 2 1 0 1
20 26 27 21 8 9 7
14 26 25 20 20 19 18
52 17 3 2 1 1 3
0 0 0 2 0 0 3

Table 4(b): Number of times the % degradation of NSL (with respect
to the best solutions) is within the interval [0, 5] across all CCRs.

Graph Types

CCRs

ALL

33
59
118
142
79
5



plotted in Figure 8(a) and Figure 8(b), for regular and irregular graphs, respectively. The complexities of
these algorithms have been mentioned earlier and concur with the measured timings. The LWB and PY
algorithms were found to be faster than the rest of the algorithms. The timings of the CPFD algorithm
were slightly slower than those of the LCTD algorithm. However, since the main objective of our
algorithm is minimization of the schedule length and the scheduling is done off-line, a slightly longer
time in generating a considerably improved solution should be acceptable. The time to schedule a very
large graph (4.3 seconds for 500 node task graph) is still reasonable. The timings of the BTDH and DSH
were also close with the former being slightly slower than the latter.

4  Conclusions
In this paper we have discussed the problem of using task-duplication in scheduling parallel

programs represented by DAGs and compared six recently reported algorithms. Through a simple
example, the functionality of the six algorithms is illustrated. We have also presented an extensive

Table 5(a): Number of times the % degradation of NSL (with respect to
the best solutions) is within the interval (5, 10] across all graph types.

Table 5(b): Number of times the % degradation of NSL (with respect
to the best solutions) is within the interval (5, 10] across all CCRs.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

LU MVA InTree OutTree ForkJoin Random

0 5 6 0 7 8
1 8 8 6 5 6
5 23 9 8 15 16
5 9 7 0 7 20
3 9 7 6 10 6
0 0 0 0 0 1

Graph Types
ALL

26
34
76
48
41
1

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

0.1 0.5 1.0 1.5 2.0 5.0 10.0

0 3 5 5 7 6 0
0 17 6 5 2 3 1
3 4 12 12 18 16 11
11 7 14 16 11 7 6
6 19 11 3 2 0 0
0 0 0 0 0 1 0

CCRs

Table 6(a): Number of times the % degradation of NSL (with respect to
the best solutions) is within the interval (10, 20] across all graph types.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

LU MVA InTree OutTree ForkJoin Random

10 11 5 0 9 10
15 12 5 10 7 12
14 4 5 11 12 12
14 0 2 0 2 4
9 9 16 13 7 14
0 0 0 0 0 0

Graph Types
ALL

45
61
58
22
68
0

Table 6(b): Number of times the % degradation of NSL (with respect
to the best solutions) is within the interval (10, 20] across all CCRs.

Algorithm

LWB
LCTD
DSH
BTDH
PY
CPFD

0.1 0.5 1.0 1.5 2.0 5.0 10.0

0 6 0 13 14 12 0
0 7 21 16 7 4 6
5 5 6 10 10 9 13
3 2 1 6 5 2 3
0 16 20 8 15 4 5
0 0 0 0 0 0 0

CCRs



comparison of all the six algorithms by noting their performance results under a wide range of input
parameters. The evaluation criteria include schedule lengths, number of processors used, and scheduling
time required. From the experimental results, it is found that the CPFD algorithm outperformed the
other algorithms by a large margin in terms of schedule lengths while it used moderate number of
processors and its running times were reasonable. The BTDH and LWB algorithms also showed
competitive performance.
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